1 (a) Determine the infimum and supremum of the set $\{\sin(n\pi/3) : n \in \mathbb{Z}\}$ and find a sequence from this set that converge to the infimum.

Solution: Let $A = {\sin(n\pi/3) : n \in \mathbb{Z}}$. Since sine function is 2π periodic,

$$A = \{ \sin(n\pi/3) : n = 0, 1, 2, 3, 4, 5 \}.$$

Therefore, $\inf A = \sin(5\pi/3) = -\frac{\sqrt{3}}{2}$ and $\sup A = \sin(\pi/3) = \frac{\sqrt{3}}{2}$. Note that $\lim_{n \to \infty} \sin \frac{(6n+5)\pi}{3} = -\frac{\sqrt{3}}{2}$.

1 (b) If S,T are bounded subsets of real numbers, prove that the supremum of the set $\{s+t : s \in S, t \in T\}$ equals sup(S) + sup(T).

Solution: See the question 1 in Analysis I (Midterm) solutions of 2012-2013.

2 (a) Let a, b > 0. Find the limit of the sequence $(a^n + b^n)^{1/n}$ as $n \to \infty$.

Solution: Set $c = \max\{a, b\}$. Then,

$$c^n \leq a^n + b^n \leq 2c^n$$
 and thus $c \leq (a^n + b^n)^{1/n} \leq c(2)^{1/n}$.

Since $2^{1/n} \to 1$ as $n \to \infty$, $(a^n + b^n)^{1/n} \to c = \max\{a, b\}$ as $n \to \infty$.

2 (b) Prove that the sequence $\{\sin(n)\}_n$ has an (infinite) subsequence $\{\sin(n_k)\}_k$ which is completely contained in [1/2, 1].

Solution: sin $x \in [1/2, 1]$ if and only if $x \in \bigcup_{k \in \mathbb{Z}} I_k$, where $I_k = [\frac{\pi}{6} + 2k\pi, \pi - \frac{\pi}{6} + 2k\pi]$. Since lenth of $I_k = \frac{2\pi}{3} > 1$, for each $k \in \mathbb{N}$, pick $n_k \in I_k \cap \mathbb{N}$. Thus, $\sin(n_k) \in [1/2, 1]$ for all k. \Box

3 (i) Consider the sequence defined recursively by $x_1 = 1, x_{n+1} = \frac{x_n^3 + 1}{4}$ for all $n \ge 1$. Prove that $\{x_n\}$ is a Cauchy sequence. State what the above process yields in terms of roots of the polynomial $x^3 - 4x + 1$.

Solution: Because $0 < x_1 \le 1$, it follows that $0 < x_n \le 1$ for all $n \in \mathbb{N}$. Therefore, we have

$$|x_{n+2} - x_{n+1}| = \frac{1}{4}|x_{n+1}^3 - x_n^3| = \frac{1}{4}|x_{n+1}^2 + x_{n+1}x_n + x_n^2||x_{n+1} - x_n| \le \frac{3}{4}|x_{n+1} - x_n|.$$

Therefore, (x_n) is a contractive sequence and hence (by Theorem 3.5.8, Introduction to Real Analysis by Robert G. Bartle and Donald R. Sherbert) there exists x such that $\lim x_n = x$. If we pass to the limit on both sides of the equality $x_{n+1} = \frac{x_n^3 + 1}{4}$, we obtain $x = \frac{x^3 + 1}{4}$ and hence $x^3 - 4x + 1$. Thus, x is a root of the polynomial $x^3 - 4x + 1$.

3 (ii) For a positive integer n, consider the arithmetic and geometric means of the n + 1 numbers 1 + 1/n(repeated n times) and 1 to deduce that the sequence $a_n = (1 + 1/n)^n$ is monotonically increasing. Similarly, for n > 1, looking at the arithmetic and geometric means of the n + 1 numbers 1 - 1/n(repeated n times) and 1, deduce that $b_n = (1 - 1/n)^{-n}$ is monotonically decreasing. Finally, find a relation between b_{n+1} and a_n to deduce that both sequences $\{a_n\}$, $\{b_n\}$ converge and, converge to the same limit.

Solution: Consider the n + 1 numbers consists of 1 + 1/n (repeated *n* times) and 1. Then, their arithmetic mean (AM) = $\frac{n(1+1/n)+1}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}$, geometric mean (GM) = $(1 + 1/n)^{\frac{n}{n+1}}$ and thus,

$$(1+1/n)^{\frac{n}{n+1}} \le 1 + \frac{1}{n+1}$$
 i.e., $\left(1+\frac{1}{n}\right)^n \le \left(1+\frac{1}{n+1}\right)^{n+1}$

Hence $a_n = (1 + 1/n)^n$ is monotonically increasing. Similarly, we can verify that $b_n = (1 - 1/n)^{-n}$ is monotonically decreasing. Since a_n is bounded above by 3 (refer Theorem 3.31 and Definition 3.30, Principles of Mathematical Analysis by Walter Rudin) and monotonically increasing, $\{a_n\}$ converges. Set $a = \lim_{n \to \infty} a_n$. Clearly, $\{b_n\}$ is bounded below by 0 and monotonically decreasing, $\{b_n\}$ converges to b (say). Note that

$$b_{n+1} = \left(1 - \frac{1}{n+1}\right)^{-(n+1)} = \left(\frac{n}{n+1}\right)^{-(n+1)} = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)a_n.$$

By taking limit on both sides of the equation $b_{n+1} = (1 + \frac{1}{n})a_n$, we get that a = b.

3 (iii) If $\{a_n\}$ is a sequence of positive, real numbers such that the sequence a_{n+1}/a_n converges, prove that the sequence $a_n^{1/n}$ also converges, and converges to the same limit. Give an example to show that the converse may not be true.

Solution: Theorem 3.37 of Principles of Mathematical Analysis by Walter Rudin tells that if $\{a_n\}$ is a sequence of positive, real numbers such that the sequence a_{n+1}/a_n converges, then $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} a_n^{1/n}$. Example 3.35(b) of Principles of Mathematical Analysis by Walter Rudin provide an example in which $a_n^{1/n}$ converges but a_{n+1}/a_n does not converges.

4 (i) Prove that the series $\sum_{n=2}^{\infty} \frac{1}{n \log(n)}$ diverges and that $\sum_{n=2}^{\infty} \frac{1}{n \log(n)^{1.1}}$ converges.

Solution: See Theorem 3.29, Principles of Mathematical Analysis by Walter Rudin.

4 (ii) Consider the series $\sum_{n\geq 1} a_n$ where $a_n = 2^{(-1)^n n}$. Determine $\liminf |a_n|^{1/n}, \limsup |a_n|^{1/n}, \liminf |a_{n+1}/a_n|, \limsup |a_{n+1}/a_n|$. What does root test give? What does ratio test give?

Solution: Note that $a_n = 2^{-n}$ or $a_n = 2^n$ if *n* is odd or even respectively. Therefore, $|a_n|^{1/n} = 1/2$ or 2 and hence, $\limsup |a_n|^{1/n} = 2$, $\limsup |a_n|^{1/n} = 1/2$. It is easy to see that $|a_{n+1}/a_n| = 2^{2n+1}$ or $2^{-(2n+1)}$ depends on *n* is odd or even. Thus, $\liminf |a_{n+1}/a_n| = 0$, $\limsup |a_{n+1}/a_n| = \infty$. By Root test, we can conclude that $\sum a_n$ converges. But, Ratio test gives no conclusion.

4 (iii) Using root/ratio/Raabe tests or otherwise, determine the convergence or otherwise of each of the following series:

(a) $\sum_{n \ge 1} \frac{1}{\binom{2n}{n}};$

Solution: Take $b_n = \frac{1}{\binom{2n}{n}} = \frac{n!n!}{(2n)!}$. Then,

$$\frac{b_{n+1}}{b_n} = \frac{(n+1)(n+1)}{(2n+1)(2n+2)} \to \frac{1}{4} \text{ as } n \to \infty.$$

Thus, by Ratio test, $\sum b_n$ converges.

(b) $\sum_{n\geq 1} a_n^3$, where $a_n = \frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}$.

Solution: Set $b_n = a_n^3$, where $a_n = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)}$. Note that, $\frac{a_{n+1}}{a_n} = \frac{(2n+2)}{(2n+1)}$. Now, consider

$$\left(\left| \frac{b_n}{b_{n+1}} \right| - 1 \right) n = \left[\left(\frac{2n+2}{2n+1} \right)^3 - 1 \right] n$$
$$= \frac{\left[(2n+2)^3 - (2n+1)^3 \right] n}{(2n+1)^3}$$
$$= \frac{\left[(2n+2)^2 + (2n+1)^2 + (2n+2)(2n+1) \right] n}{(2n+1)^3}.$$

Thus, $\left(\left| \frac{b_n}{b_{n+1}} \right| - 1 \right) n \to \frac{3}{2}$ as $n \to \infty$. Thus, by Rabbe's test, $\sum b_n$ converges.

5.1 (a) Define the interior S^0 and closure \overline{S} of a set $S \subset \mathbf{R}$.

Solution: See the Definition 2.18 of Principles of Mathematical Analysis by Walter Rudin

5.1 (b) If $S_n (n \ge 1)$ are subsets of **R**, then prove that $(\bigcap_{n=1}^{\infty} S_n)^0 \subseteq \bigcap_{n=1}^{\infty} S_n^0$. Give an example to show that the inclusion could be proper.

Solution: Let $x \in (\bigcap_{n=1}^{\infty} S_n)^0$. Then there exist a neighbourhood U of x such that $U \subseteq \bigcap_{n=1}^{\infty} S_n$. Inparticular, $U \subseteq S_n$ for all n and therefore $x \in S_n^0$ for all n. Hence $(\bigcap_{n=1}^{\infty} S_n)^0 \subseteq \bigcap_{n=1}^{\infty} S_n^0$. To show this inclusion may be proper, consider the following example. Take $S_n = (-1/n, 1/n)$. Then $S_n^0 = S_n$ for all n. Observe that,

$$\bigcap_{n=1}^{\infty} S_n^0 = \{0\} \text{ and } (\bigcap_{n=1}^{\infty} S_n)^0 = (\{0\})^0 = \emptyset.$$

Thus $(\bigcap_{n=1}^{\infty} S_n)^0 \subsetneq \bigcap_{n=1}^{\infty} S_n^0$.

5.1 (c) For any subset S of **R**, prove that $S^0 = \overline{(S^c)}^c$ where A^c denotes the complement of A.

Solution: Note that A^0 is the largest open set contained in A and \overline{A} is the smallest closed set that contains A.

Since $S^0 \subseteq S$, we have $S^c \subseteq (S^0)^c = \text{closed set}$ (since S^0 is open). Thus, $\overline{S^c} \subseteq (S^0)^c$ and therefore $S^0 \subseteq \overline{(S^c)}^c$.

Other way inclusion: Since $\overline{(S^c)}$ is a closed set containing S^c , $\overline{(S^c)}^c$ is a open set contained in S. Thus, $\overline{(S^c)}^c \subseteq S^0$. Hence proved.

5.2 (a) Write down a set of open intervals $I_n (n \ge 1)$ which cover (0,1) such that finitely many of the I_n 's do not cover (0,1).

Solution: Take $I_n = (1/n, 1)$ so that $(0, 1) = \bigcup_{n=1}^{\infty} I_n$. Now, it is trivial to see that finitely many of the I_n 's do not cover (0, 1).

5.2 (b) Suppose S is a set of real numbers such that whenever $S \subset \bigcup_{n\geq 1} U_n$ with U_n 's open, there is a positive integer n such that $S \subset \bigcup_{m=1}^n U_m$. Prove that S must be closed. i.e., Prove that compact sets are closed.

Solution:

See Theorem 2.34, Priniciples of Mathematical Analysis by Walter Rudin.