
10-09-2018 Solution
Analysis-I MIDTERM Exam Semester I

1 (a) Determine the infimum and supremum of the set {sin(nπ/3) : n ∈ Z} and find a sequence from this
set that converge to the infimum.

Solution: Let A = {sin(nπ/3) : n ∈ Z}. Since sine function is 2π periodic,

A = {sin(nπ/3) : n = 0, 1, 2, 3, 4, 5}.

Therefore, inf A = sin(5π/3) = −
√
3
2 and supA = sin(π/3) =

√
3
2 .

Note that lim
n→∞

sin (6n+5)π
3 = −

√
3
2 .

1 (b) If S, T are bounded subsets of real numbers, prove that the supremum of the set {s+ t : s ∈ S, t ∈ T}
equals sup(S) + sup(T ).

Solution: See the question 1 in Analysis I (Midterm) solutions of 2012-2013.

�

2 (a) Let a, b > 0. Find the limit of the sequence (an + bn)1/n as n→∞.

Solution: Set c = max{a, b}. Then,

cn ≤ an + bn ≤ 2 cn and thus c ≤ (an + bn)1/n ≤ c (2)1/n.

Since 21/n → 1 as n→∞, (an + bn)1/n → c = max{a, b} as n→∞.

2 (b) Prove that the sequence {sin(n)}n has an (infinite) subsequence {sin(nk)}k which is completely
contained in [1/2, 1].

Solution: sinx ∈ [1/2, 1] if and only if x ∈
⋃
k∈Z

Ik, where Ik = [π6 + 2kπ, π− π
6 + 2kπ]. Since lenth

of Ik = 2π
3 > 1, for each k ∈ N, pick nk ∈ Ik ∩N. Thus, sin(nk) ∈ [1/2, 1] for all k. �

3 (i) Consider the sequence defined recursively by x1 = 1, xn+1 =
x3
n+1
4 for all n ≥ 1. Prove that {xn} is a

Cauchy sequence. State what the above process yields in terms of roots of the polynomial x3−4x+1.

Solution: Because 0 < x1 ≤ 1, it follows that 0 < xn ≤ 1 for all n ∈ N. Therefore, we have

|xn+2 − xn+1| =
1

4
|x3n+1 − x3n| =

1

4
|x2n+1 + xn+1xn + x2n| |xn+1 − xn| ≤

3

4
|xn+1 − xn|.

Therefore, (xn) is a contractive sequence and hence (by Theorem 3.5.8, Introduction to Real Anal-
ysis by Robert G. Bartle and Donald R. Sherbert) there exists x such that limxn = x. If we pass

to the limit on both sides of the equality xn+1 =
x3
n+1
4 , we obtain x = x3+1

4 and hence x3 − 4x+ 1.
Thus, x is a root of the polynomial x3 − 4x+ 1.
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3 (ii) For a positive integer n, consider the arithmetic and geometric means of the n+ 1 numbers 1 + 1/n
(repeated n times) and 1 to deduce that the sequence an = (1 + 1/n)n is monotonically increasing.
Similarly, for n > 1, looking at the arithmetic and geometric means of the n + 1 numbers 1 − 1/n
(repeated n times) and 1, deduce that bn = (1 − 1/n)−n is monotonically decreasing. Finally, find
a relation between bn+1 and an to deduce that both sequences {an}, {bn} converge and, converge to
the same limit.

Solution: Consider the n+ 1 numbers consists of 1 + 1/n (repeated n times) and 1. Then, their

arithmetic mean (AM)= n(1+1/n)+1
n+1 = n+2

n+1 = 1 + 1
n+1 , geometric mean (GM)= (1 + 1/n)

n
n+1 and

thus,

(1 + 1/n)
n

n+1 ≤ 1 +
1

n+ 1
i.e.,

(
1 +

1

n

)n
≤
(

1 +
1

n+ 1

)n+1

.

Hence an = (1 + 1/n)n is monotonically increasing. Similarly, we can verify that bn = (1− 1/n)−n

is monotonically decreasing. Since an is bounded above by 3 (refer Theorem 3.31 and Definition
3.30, Priniciples of Mathematical Analysis by Walter Rudin) and monotonically increasing, {an}
converges. Set a = lim

n→∞
an. Clearly, {bn} is bounded below by 0 and monotonically decreasing,

{bn} converges to b (say). Note that

bn+1 =

(
1− 1

n+ 1

)−(n+1)

=

(
n

n+ 1

)−(n+1)

=

(
1 +

1

n

)n+1

=

(
1 +

1

n

)
an.

By taking limit on both sides of the equation bn+1 = (1 + 1
n )an, we get that a = b.

3 (iii) If {an} is a sequence of positive, real numbers such that the sequence an+1/an converges, prove that

the sequence a
1/n
n also converges, and converges to the same limit. Give an example to show that

the converse may not be true.

Solution: Theorem 3.37 of Priniciples of Mathematical Analysis by Walter Rudin tells that
if {an} is a sequence of positive, real numbers such that the sequence an+1/an converges, then

lim
n→∞

an+1

an
= lim

n→∞
a
1/n
n . Example 3.35(b) of Priniciples of Mathematical Analysis by Walter Rudin

provide an example in which a
1/n
n converges but an+1/an does not converges. �

4 (i) Prove that the series
∑∞
n=2

1
n log(n) diverges and that

∑∞
n=2

1
n log(n)1.1 converges.

Solution: See Theorem 3.29, Priniciples of Mathematical Analysis by Walter Rudin.

4 (ii) Consider the series
∑
n≥1 an where an = 2(−1)

nn.

Determine lim inf |an|1/n, lim sup |an|1/n, lim inf |an+1/an|, lim sup |an+1/an|. What does root test
give? What does ratio test give?

Solution: Note that an = 2−n or an = 2n if n is odd or even respectively. Therefore, |an|1/n = 1/2
or 2 and hence, lim sup |an|1/n = 2, lim inf |an|1/n = 1/2. It is easy to see that |an+1/an| = 22n+1

or 2−(2n+1) depends on n is odd or even. Thus, lim inf |an+1/an| = 0, lim sup |an+1/an| = ∞. By
Root test, we can conclude that

∑
an converges. But, Ratio test gives no conclusion.

4 (iii) Using root/ratio/Raabe tests or otherwise, determine the convergence or otherwise of each of the
following series:
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(a)
∑
n≥1

1

(2n
n )

;

Solution: Take bn = 1

(2n
n )

= n!n!
(2n)! . Then,

bn+1

bn
=

(n+ 1)(n+ 1)

(2n+ 1)(2n+ 2)
→ 1

4
as n→∞.

Thus, by Ratio test,
∑
bn converges.

(b)
∑
n≥1 a

3
n, where an = 1·3···(2n−1)

2·4···(2n) .

Solution: Set bn = a3n, where an = 1·3···(2n−1)
2·4···(2n) . Note that, an+1

an
= (2n+2)

(2n+1) . Now, consider( ∣∣∣∣ bnbn+1

∣∣∣∣− 1

)
n =

[(
2n+ 2

2n+ 1

)3

− 1

]
n

=

[
(2n+ 2)3 − (2n+ 1)3

]
n

(2n+ 1)3

=

[
(2n+ 2)2 + (2n+ 1)2 + (2n+ 2)(2n+ 1)

]
n

(2n+ 1)3
.

Thus,
( ∣∣∣ bn

bn+1

∣∣∣− 1
)
n→ 3

2 as n→∞. Thus, by Rabbe’s test,
∑
bn converges.

�

5.1 (a) Define the interior S0 and closure S̄ of a set S ⊂ R.

Solution: See the Definition 2.18 of Priniciples of Mathematical Analysis by Walter Rudin

5.1 (b) If Sn(n ≥ 1) are subsets of R, then prove that (
∞⋂
n=1

Sn)0 ⊆
∞⋂
n=1

S0
n. Give an example to show that

the inclusion could be proper.

Solution: Let x ∈ (
∞⋂
n=1

Sn)0. Then there exist a neighbourhood U of x such that U ⊆
∞⋂
n=1

Sn.

Inparticular, U ⊆ Sn for all n and therefore x ∈ S0
n for all n. Hence (

∞⋂
n=1

Sn)0 ⊆
∞⋂
n=1

S0
n.

To show this inclusion may be proper, consider the following example. Take Sn = (−1/n, 1/n).
Then S0

n = Sn for all n. Observe that,

∞⋂
n=1

S0
n = {0} and (

∞⋂
n=1

Sn)0 = ({0})0 = ∅.

Thus (
∞⋂
n=1

Sn)0 (
∞⋂
n=1

S0
n.

5.1 (c) For any subset S of R, prove that S0 = (Sc)
c

where Ac denotes the complement of A.

Solution: Note that A0 is the largest open set contained in A and Ā is the smallest closed set
that contains A.

3



Since S0 ⊆ S, we have Sc ⊆ (S0)c = closed set (since S0 is open). Thus, Sc ⊆ (S0)c and therefore

S0 ⊆ (Sc)
c
.

Other way inclusion: Since (Sc) is a closed set containing Sc, (Sc)
c

is a open set contained in S.

Thus, (Sc)
c
⊆ S0. Hence proved.

5.2 (a) Write down a set of open intervals In(n ≥ 1) which cover (0, 1) such that finitely many of the In’s
do not cover (0, 1).

Solution: Take In = (1/n, 1) so that (0, 1) =
∞⋃
n=1

In. Now, it is trivial to see that finitely many

of the In’s do not cover (0, 1).

5.2 (b) Suppose S is a set of real numbers such that whenever S ⊂
⋃
n≥1 Un with Un’s open, there is a

positive integer n such that S ⊂
⋃n
m=1 Um. Prove that S must be closed. i.e., Prove that compact

sets are closed.

Solution:

See Theorem 2.34, Priniciples of Mathematical Analysis by Walter Rudin.

�
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